Telegram Group & Telegram Channel
Что такое implicit bias?

Под этим термином понимают явление, при котором алгоритм обучения среди всех возможных моделей с нулевым эмпирическим риском выбирает определённые. Поясним на примере.

🟣 Есть линейная регрессия с квадратичной функцией потерь. Алгоритм может выбрать разные модели, которые минимизируют эту функцию потерь, но на практике он выбирает те, которые соответствуют определённым характеристикам. Например, при использовании градиентного спуска для обучения линейной регрессии, выбирается та модель, у которой коэффициенты меньше по абсолютной величине. Это происходит из-за особенностей метода оптимизации, который имеет склонность к нахождению определённых решений.

Также можно сказать, что градиентный спуск с фиксированным числом шагов «предпочитает» решения малого ранга. Это связано с тем, что данный метод имеет тенденцию находить более простые и гладкие решения, особенно в условиях ограниченного числа итераций.

Таким образом, implicit bias вносит свои коррективы в процесс выбора модели, даже если она теоретически не имеет эмпирического риска.

#машинное_обучение
👍42



tg-me.com/ds_interview_lib/483
Create:
Last Update:

Что такое implicit bias?

Под этим термином понимают явление, при котором алгоритм обучения среди всех возможных моделей с нулевым эмпирическим риском выбирает определённые. Поясним на примере.

🟣 Есть линейная регрессия с квадратичной функцией потерь. Алгоритм может выбрать разные модели, которые минимизируют эту функцию потерь, но на практике он выбирает те, которые соответствуют определённым характеристикам. Например, при использовании градиентного спуска для обучения линейной регрессии, выбирается та модель, у которой коэффициенты меньше по абсолютной величине. Это происходит из-за особенностей метода оптимизации, который имеет склонность к нахождению определённых решений.

Также можно сказать, что градиентный спуск с фиксированным числом шагов «предпочитает» решения малого ранга. Это связано с тем, что данный метод имеет тенденцию находить более простые и гладкие решения, особенно в условиях ограниченного числа итераций.

Таким образом, implicit bias вносит свои коррективы в процесс выбора модели, даже если она теоретически не имеет эмпирического риска.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/483

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Библиотека собеса по Data Science | вопросы с собеседований from ms


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA